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Modifications for an explicit algebraic stress model
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SUMMARY

An extension of the explicit algebraic stress model, developed by Gatski and Speziale [Gatski TB,
Speziale CG. On the explicit algebraic stress models for complex turbulent flows. Journal of Fluid
Mechanics 1993; 254: 59–78] is proposed. The extension implicates some essential characteristics of
second-order closure models. The strain-dependent coefficients are modified, resulting in an alleviation of
the numerical instabilities involved in the model. A new near-wall damping function fm in the eddy
viscosity relation is introduced. To enhance dissipation in near-wall regions, the model constant Ce1 is
modified and an extra positive source term is included in the dissipation equation. In addition, a
realizable time scale is incorporated to remove the wall singularity. Computed results show that the
modified Gatski–Speziale (MGS) model predictions are in better agreement with the direct numerical
simulation (DNS) and experimental data than those of the original Gatski–Speziale (OGS) model.
Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Second-order closure models of turbulence, which are based on the Reynolds stress transport
equation, entangle the history and non-local effects automatically. Basically, they are formu-
lated to describe complex turbulent flows where there are significant departures from equi-
librium. With the help of the equilibrium hypothesis, Rodi [1] proposed an idea of obtaining
the algebraic stress model (ASM) from the second-order closures. Physically, two assumptions
are made in the algebraic Reynolds stress closures: the difference between the convection and
diffusion terms in the Reynolds stress equation is proportional to the corresponding difference
in the turbulent kinetic energy equation, and the Reynolds stress anisotropy bij is constant
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along a streamline. It provides algebraic equations without solving the differential equations
for the Reynolds stresses.

Invoking the same equilibrium hypothesis as Rodi, Pope [2] developed a methodology to
procure an explicit relation for the Reynolds stress tensor from the implicit algebraic stress
model (which Rodi obtained from the model of Launder et al. [3]) by using a tensorial
polynomial expansion in the integrity basis. Gatski and Speziale [4] used this method to
derive an explicit algebraic stress equation for two- and three-dimensional turbulent flows.
In order to generalize the results, the algebraic stress representation is applied to the
general class of pressure–strain correlation models [5], which are linear in the anisotropic
tensor. After regularization, an anisotropic eddy viscosity model with strain-dependent co-
efficients is achieved, which has been referred to as an explicit ASM. Unambiguously,
the explicit model extends the ability of the two-equation models to account for non-
equilibrium and anisotropic effects. However, the model shows evidence of numerical insta-
bility when the flow is far from equilibrium [6]. The reason is that the ASM is more
susceptible to the rotational strains.

In the present study, an extended version of the original Gatski–Speziale (OGS) model is
constructed. Some modifications for the coefficients that depend non-linearly on both the
rotational and irrotational strains are proposed based on the realizability constraints, i.e.,
the positivity of the normal Reynolds stresses and Schwarz’s inequality between turbulent
velocity correlations. Consequently, the strain-dependent sensitivity of the model is miti-
gated and a notable improvement in the numerical stability is attained. In near-wall re-
gions, the ‘anisotropic production’ in the e-equation is accounted for substantially by
modifying the model constant Ce1 and adding a secondary source term. Furthermore, the
wall singularity is removed by using a physically appropriate time scale that never falls
below the Kolmogorov time scale 
n/e, representing the near-wall turbulent phenomena. A
near-wall eddy viscosity damping function fm is introduced, which reaches the upper limit
value of unity in the logarithmic layer.

The performance of the modified Gatski–Speziale (MGS) model is evaluated by calculat-
ing some well-acquainted turbulent flows, consisting of fully developed channel flows, a
flat-plate boundary layer flow with zero pressure gradient, a backward-facing step flow, and
heat transfer coefficients for semi-confined impinging slot and round jets respectively.

2. TURBULENCE MODELING

The two-dimensional Reynolds-averaged Navier–Stokes (RANS) equations, including the
equations for the kinetic energy k and dissipation e, can be written in the following form:

(U
(t

+
((F−F6)
(x

+
((G−G6)
(y

=Q (1)

where U= (r, ru, r6, E, rk, re)T. The inviscid fluxes are
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Here r is the density and p is the pressure. The total internal energy is defined as

E=re+
rVb ·Vb

2
+rk (3)

where e is the specific internal energy and Vb =uib +6jb is the velocity. The viscous fluxes are
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and the viscous stress tensor can be given as

tij=m
�(uj

(xi

+
(ui

(xj

−
2
3

(9 ·Vb )dij
�

−ruiuj (5)

where m is the laminar viscosity and ruiuj are the Reynolds stresses. The heat flux is calculated
from

q� = − (k+kT)9T= −
�

m
cp

Pr
+mT

cp

PrT

�
9T (6)
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where mT is the coefficient of turbulent viscosity, k and kT are the laminar and turbulent
thermal conductivity coefficients, and Pr and PrT represent the laminar and turbulent Prandtl
numbers respectively. Clearly, the turbulent part of the total heat flux is estimated using the
Boussinesq approximation. The diffusion of turbulence is modeled as

mk9k=
�

m+
mT

sk

�
9k, me9e=

�
m+

mT

se

�
9e (7)

where sk and se are the appropriate empirical constants. The source term Q for the k and e

equations can be written as
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where the turbulence production term P=uiuj((ui/(xj). The eddy viscosity is evaluated as

mT=Cmfmr
k2

e
(9)

Table I summarizes functions and constants for different turbulence models. The friction
velocity ut, dimensionless distance y+ and different Reynolds numbers associated with the
turbulence modeling are defined as

ReT=
rk2

mẽ
, Rey=

r
kyn

m
, y+ =

rynut

m
, ut=
tw/r (10)

where yn is the normal distance from the wall and tw represents the wall shear stress. The
modeling of ruiuj in the explicit ASM and associated relevant aspects are discussed in some
detail in subsequent sections.

Table I. Functions and constants.

Model D ew−B.C. Ce1 Ce2 PrT sk se Cm

1.4 0.0880.0 2n((
k/(yn)2 1.44OGS 1.83 0.9 1.0
1.4 (20)MGS 0.0 2n(k/yn

2) (27) 1.83 0.9 1.0

fm f2 E

1.0OGS 0.01.0−exp(−Rey/12.5)
MGS (31)1.0(26)

Figures in parentheses represent Equation numbers.
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2.1. Original explicit ASM

The explicit solution to the Reynolds-stress tensor ruiuj, obtained by Gatski and Speziale,
constitutes an anisotropic eddy viscosity model with strain-dependent coefficients. For two-
dimensional mean turbulent flows, the non-linear constitutive equation takes a simplified form

ruiuj=
2
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rkdij−2Cmr
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e
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with

Cm=
3(1+h2)a1

3+h2+6j2h2+6j2 (12)
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where Sk/e and Wk/e represent the shear and vorticity parameters respectively; S=
2SijSij

and W=
2WijWij. The mean strain rate and mean vorticity tensors Sij and Wij are defined
as
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The coefficients a1–a5 associated with Equations (11)–(13) are given by

a1=
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3
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(15)

The pressure–strain correlation model of Speziale et al. [7] is considered herein so that C1–C4

become

C1=3.4+1.80
P
e

, C2=
4
5
−1.30Pb

1/2, C3=1.25, C4=0.40 (16)

where Pb=bijbij and the anisotropy of the Reynolds stress bij is defined as

bij=
uiuj−

2
3

kdij

2k
(17)
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For homogeneous turbulent flows that are in equilibrium, Pb and P/e attain constant
values, so that Pb:0.11 and P/e= (Ce2−1)/(Ce1−1):1.88. These values are set in Equa-
tions (15) and (16) to calculate inhomogeneous flows. The function f2 given in Table I removes
the singularity of the dissipation equation at the wall [6]. The model can be integrated to the
wall without adding a damping to the eddy viscosity, since the strain-dependent coefficient Cm

in the eddy viscosity equation provides natural damping as the wall is approached.

2.2. Modified explicit ASM

Obviously, the explicit algebraic stress model augments the capacity of the two-equation
models to account for non-equilibrium effects through the coefficient Cm. Unfortunately, the
OGS model exhibits numerical instability in the context of the algebraic stress model when the
flow is far from equilibrium. The reason is that the model responds more sensitively to the
strain-dependent coefficients (i.e., rotational strains). To avoid a numerical problem, a
modified form of Cm is proposed in Reference [8]

Cm:
a1

1+4h2+j2 (18)

Note that Equation (18) is equivalent to Equation (12) for the homogeneous shear flow, which
is characterized by

S12=
S
2
=S21, W12=

S
2
= −W21, S=

(u
(y

(19)

Figure 1, which shows the distribution of Cm as a function of Sk/e, bears evidence for this. The
proposed modification reduces the strain-dependent sensitivity and numerical difficulties to
some extent. An alternative regularized form of Cm is used by Abid et al. [7] in aerodynamic
flow computations. The formulation is synonymous to Equation (12) to the order h6 and j6,

Figure 1. Distribution of Cm as a function of the shear parameter Sk/e.
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since it does not discernibly alter the value of Cm near equilibrium conditions, but limits Cm to
a non-zero value (0.2a1) for high values of h and j to preclude numerical instabilities.
However, to maintain the relevant aspects of the MGS model, the coefficient Cm cannot be a
constant.

As is observed from Figure 1, the coefficient Cm (and therefore the turbulent viscosity)
decreases as the parameter Sk/e increases. Distinguishably, Cm in Equation (18) has still the
tendency to damp out the eddy viscosity at higher values of Sk/e. To root this situation out,
a plausible formulation is devised following Reference [7] as

Cm*=min
�

a1,
2a1

1+3
4h2+j2

n
(20)

Actually, Equation (12) or (18) is used to calibrate the coefficient Cm*, focusing attention
toward the homogeneous shear flow (Figure 1). The modified Cm* is reduced significantly by
the shear parameter, i.e., the mean strain rate is maintained at a such level that could mimic
the complex turbulent flows.

The physically necessary conditions for a turbulence model are the realizability conditions
that may be defined as [5]

ui
2]0,

uiuj
2

ui
2 uj

2
51 (21)

In order to make the eddy viscosity model realizable, an alternative form of the coefficient g
associated with a4 and a5, is considered

g*=
1

1+3(4h2+j2)
(22)

Obviously, the coefficient g* is capable of responding to both the shear and vorticity
dominated flows that are far from equilibrium. Note that Equation (22) gives g*:0.22 for
Tavoularis and Corrsin’s [9] homogeneous shear flow at Sk/e=6.0, which is very close to the
value of g (=0.233) used in Equation (15).

The non-linear constitutive equation, combined with the above-mentioned modifications is
reconstructed as

ruiuj=
2
3

rkdij−2mT
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Sij−
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3

Skkdij
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+a4Tt(SikWkj+SjkWki)

−a5Tt
�
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3
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(23)

with

a4= (2−C4)g*/2, a5= (2−C3)g*, mT=Cm*fmrkTt, Tt=max(k/e, CT
n/e)
(24)
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where the coefficient g* is given by Equation (22). Other constants are the same as those
employed in the OGS model. The realizable time scale Tt warrants that the eddy time scale
never falls below the Kolmogorov (dissipative eddy) time scale 
n/e, dominant in the
immediate vicinity of the solid wall. This turbulence time scale prevents the singularity at
yn=0 in the dissipation equation. Therefore, the source term Q of the e-equation is recast as

Q=
Ce1 rP−Ce2 ro

Tt

+E (25)

This approach has been previously devised by Durbin [10] and, in a different context, by
Goldberg [11], and later adopted by others [12,13]. Nevertheless, the empirical constant CT

associated with the Kolmogorov time scale in Equation (24) induces an ‘arbitrariness’. The
dissipative eddy time scale is activated when y+B5 (this range is possibly extensible with an
increase in CT), and the turbulence models constructed so far have deemed values of CT in the
range of 1–6.

For the MGS model, CT=
2 is used, which is estimated as follows [13]. In the viscous
sub-layer, k=y2/(CT

2 n/e), where the basic scale is the Kolmogorov time scale. Besides, the
k-equation reduces to n (2k/(y2=e as the wall is approached. Combining these relations
provides CT=
2.

The near-wall damping function fm for the eddy viscosity in Equation (24) is chosen as

fm= tanh[0.26(Rey
1.5/ReT)1.5] (26)

and is valid in the whole flow field, including the viscous sub-layer and the logarithmic layer.
As shown in Figure 2(a), the proposed function approaches unity far from the wall, which
indicates that the standard k–e model form is recovered. The Reynolds number, Retutd/n,
in the test calculations is based on the friction velocity ut and the channel half-width d. In
principle, the eddy viscosity confronts two major dynamic effects; the effect of wall proximity
in the near-wall region through fm, and the non-equilibrium effect through the coefficient Cm*
away from the wall.

When solving the full system of equations, the computed results show a tendency to
underestimate the dissipation rate e in near-wall flows. The reasons are exquisitely documented
in References [14,15]. Various formulations have been developed to enhance dissipation in such
situations [16–19]. In Reference [17], the non-dimensional parameter P/e is used to increase
the production of e in the near-wall region: Ce1* =1.44(1+a1P/e), with a1=0.1 [1]. However,
this procedure can cause numerical instability in more complex flows. In the present study, a
replacement of this unstable term is explored as

Ce1=1.3+
Cm*
23

max[(Sk/e)2, (Wk/e)2] (27)

Figure 1 essentially reveals that Cm* in Equation (20) allows reasonable changes in Ce1. The
relation is designed such that Ce1 takes the anisotropy of turbulence into account.
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Figure 2. Variations of the damping functions with the wall distance in a channel flow.

The secondary source term E in Equation (25) is constructed in a manner so that its
near-wall limit dissolves the corresponding non-zero destruction term in the e-equation.
Therefore, it follows that

E=Ce2rew/(CT
n/e) (28)

where ew signifies the wall-dissipation rate and is equal to the viscous-diffusion rate [20]

ew=2Aen
�(u
(y
�

w

2

(29)

with

�(u
(y
�

w

2

:2SijSij=S2

where Ae (ew
+/2=new/2u t

4) is a function of the Reynolds number. Experimental and DNS data
of flat plate and channel flows indicate that 0.05BAeB0.11, with a preference for higher
values at larger Reynolds numbers [20–23]. At the wall, Cm* (:0.114) gets closer to the
maximum limit of Ae. It is more convenient to use Cm* instead of selected values for Ae since
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e (as well as Cm*) varies very rapidly near the wall. Consequently, the above relations combine
to yield

E=
2Ce2Cm*r
ne

CT

S2 (30)

To reproduce the level of kinetic energy (and therefore the wall-dissipation rate, since it is
dependent on k, see Table I) in the immediate vicinity of the wall, E must vanish at the wall.
In addition, E must loose its influence outside the close proximity of the wall in order to
recover the parent high-Reynolds number model. Therefore, a function must be devised so as
to make E zero at the wall as well as far from the wall. Here, the form is adopted as

E=
2Ce2Cm*r
ne

CT

S2fe (31)

with

fe= tanh(0.20
ReT) exp(−0.24
Rk) (32)

where Rk=KT/nS and KT=Vb ·Vb /2+k. The constants associated with Equation (32) are tuned
with the model based on well-studied flows considered hereinafter. According to Durbin’s
hypothesis, the mechanism conveyed through the function fe can be addressed as the ‘kine-
matic wall blocking’. The distribution of fe as a function of the wall distance in a channel flow
is shown in Figure 2(b). Remote from the wall, a gradual approach toward zero of E (becomes
much smaller than the other terms in the e-equation) is accelerated by both Cm* (natural
damping) and fe (artificial damping). From the distributions of Cm* and fe in Figures 1 and 2(b)
respectively; it seems that the effect of E is confined within the wall layer (y+530).

Using Equation (17), the Reynolds stress anisotropies in homogeneous shear flow can be
derived from Equation (23) as

b11=
�a4

2
+

a5

12
�

Cm*
�Sk

e

�2

b22=
�

−
a4

2
+

a5

12
�

Cm*
�Sk

e

�2

(33)

b12= −
Cm*
2

Sk
e

Detailed comparisons of the anisotropies with the DNS and experimental data are shown in
Table II for the channel flow of Kim [Personal communication 1990] in the inertial sub-layer
at Sk/e=3.3, and in Table III for the homogeneous shear flow of Tavoularis and Corrsin at
Sk/e=6.0 respectively. Clearly, the present and also the OGS models provide reasonable
anisotropy of Reynolds stresses for both the boundary layer and homogeneous shear flows,
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Table II. Anisotropy in the log layer of channel flow.

bij MGSOGSStandardDNS

0.0990.00.175b11 0.198
−0.145b12 −0.149 −0.139 −0.134

b22 −0.145 0.0 −0.072 −0.144

compared with the standard k–e eddy viscosity model. Therefore, they are capable of
predicting the turbulent-driven secondary flows. As can be seen from Table II, the predicted
anisotropy (b11 and b22) by the OGS model is weaker than that of the MGS model, which may
result in a difference of accuracy.

Variations of the Reynolds stress anisotropies in the homogeneous shear flow are shown in
Figure 3 as a function of the shear parameter Sk/e. Noteworthily, in pure shear flows, the
OGS model tends to exhibit improper behavior at higher values of Sk/e, since the component
b12 approaches zero as Sk/e increases. The Cm-distribution in Figure 1 also clarifies the
unexpected consequences of the OGS model. On the contrary, the unusual feature of b12 is
diminished in the MGS model. This improvement is mainly due to the behavior of Cm* in the
MGS model. It is important to mention that the present model satisfies the realizability
constraint in Equation (21), a clear demonstration of which is provided by Figure 3. However,
experience shows that numerical formulations of the modeled equations do not exactly satisfy
the strong form of realizability, i.e., a sufficient condition to guarantee the positivity in energy
components, always.

3. SOLUTION METHOD

A cell-centered finite volume scheme together with an artificial compressibility approach [8] is
employed to solve the flow equations. In the artificial compressibility method, the artificial
compressibility is principally added to the derivative of density with respect to the pressure,
influencing not only the continuity equation but also the other equations. The energy equation
is not decoupled from the system of equations, which facilitates a uniform treatment for both
the primitive and conservative variables. A fully upwinded second-order spatial differencing is
applied to approximate the convective terms. Roe’s [24] damping term is used to calculate the
flux on the cell face. A diagonally dominant alternating direction implicit (DDADI) time
integration method [25] is applied for the iterative solution of the discretized equations. A
multigrid method is utilized for the acceleration of convergence [26]. The basic implementation

Table III. Anisotropy in the homogeneous shear flow.

bij Experiment Standard OGS MGS

0.2030.00.202b11 0.196
−0.273 −0.160−0.142b12 −0.156

b22 −0.145 0.0 −0.148 −0.143
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Figure 3. Anisotropy tensors as a function of the shear parameter Sk/e.

of the artificial compressibility method and associated features are described in Reference
[8,27,28].

4. RESULTS AND DISCUSSION

To ascertain the generality and efficacy of the MGS model, a few applications to two-
dimensional turbulent flows are considered. Tested flows consist of fully developed channel
flows, a flat plate boundary layer flow with zero pressure gradient, a backward-facing step
flow, and heat transfer from semi-confined impinging slot and round jets. For a comparison
purpose, a widely used low-Reynolds number k–e model of Chien (CH) is considered [29].
Some calculations from the OGS model are also included. Note that for the OGS model,
Equation (11) is solved in the framework of the k–e formulation assuming a constant value for
Cm that Table I shows, in evaluating the turbulent diffusion (i.e., the traditional eddy viscosity
concept) for k and e equations as suggested by References [4,6]. Unfortunately, for the
backward-facing step and jet impingement flows involving the flow separation and reattach-
ment, the OGS model receives no convergence from the numerical method implemented herein.
Probably, the numerical issue plays an influential role to cause divergence for the OGS model.
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4.1. Channel flow

Computations are carried out for fully developed turbulent channel flows at Ret=180 and
395, for which turbulence quantities are attainable from the DNS data [22]. Calculations are
conducted in the half-width of the channel, imposing periodic boundary conditions, except for
the pressure, pertaining to the upstream and downstream boundaries. Computations involving
a 48×32 non-uniform grid refinement for Ret=180 and 48×48 for Ret=395 are considered
to be sufficiently accurate to describe the flow characteristics. For both cases, the length of the
computational domain is 32d, and the height of the first row of cells is located at y+B1.0.
Comparisons are made by plotting the results in the form of u+ =u/ut, k+ =k+/u t

2,
u6+ =u6/u t

2 and e+ =ne/u t
4 versus y+.

Figure 4 shows the velocity profiles for different models. Predictions of both the MGS and
CH models agree well with the DNS data. The OGS model overestimates the mean velocity
profile in the outer layer. Profiles of turbulent shear stresses are displayed in Figure 5.
Agreement of the MGS model prediction with the DNS data seems to be almost perfect. As
can be seen, both the OGS and CH models underpredict the shear stress at Ret=180 in the
y+\20 range.

Figure 4. Mean velocity profiles of channel flow.
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Figure 5. Shear stress profiles of channel flow.

Figure 6 portrays the k+-profiles as predicted by all models. As is evident, the MGS model
gives some improvement in the prediction of k+ compared with the OGS model. Actually, the
eddy viscosity damping function fm plays a key role in the prediction of the turbulent kinetic
energy which is introduced with the MGS model. The CH model predicts a peak at a slightly
shifted location. The OGS model badly underestimates the value of k+ in the near-wall region
05y+B5.

Figure 7 exhibits the profiles of e+ from the three computations. Note that the e+

calculated by the CH model is a reduced e+ (i.e., ẽ), it has to go to zero at the wall.
Surprisingly, the OGS model yields a low prediction for e+ in the inner region 05y+B5 and
predicts a large maximum away from the wall, although it does not presume a zero value for
e at the wall. On the contrary, the MGS model provides a maximum e+ at the wall which is
more in line with the experimental and DNS data.

4.2. Flat-plate boundary layer flow

The near-wall behavior of the turbulence model is checked by calculating the flow over a
flat-plate with a high free-stream turbulence intensity. The test case is taken from ‘ERCOF-
TAC’ Fluid Dynamics Database WWW Services (http://fluindigo.mech.surrey.ac.uk/) pre-
served by P. Voke. Measurements down to x=1.495 m, which corresponds to Rex:94000,
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Figure 6. Turbulence kinetic energy profiles of channel flow.

are made by J. Coupland at Rolls Royce. The inlet velocity is 9.4 m s−1 and the pressure
gradient is zero. The upstream turbulence intensity Tu=6.0 per cent, defined as Tu=
2/3k/
Uref, where Uref indicates the reference velocity. The dissipation is set so that the decay of
free-stream turbulence is in balance.

Computations begin 16 cm ahead of the leading edge and symmetric conditions are applied.
The length and height of the grid are 1.6 and 0.3 m respectively. The near-wall node is located
at y+B1.0, except the point at the leading edge (y+ =2.1). The grid size is 96×64 and
heavily clustered near the wall.

The predicted skin friction coefficients (Cf=2u t
2/U ref

2 ) are compared with the experimental
data in Figure 8. The overall performance in predicting the friction coefficient is the best for
the OGS model, exhibiting an interesting feature that the transition starts at the right position,
although it is not strong enough. Seemingly, the CH model gives earlier transition than that
seen in the experiment, and it is too weak. In contrast, the MGS model predicts an overshoot
following the transition in line with the experiment, and after the transition, it gives values of
Cf that agree well with the fully turbulent line.

Profiles of the mean velocity are shown in Figure 9 at four representative positions. The
OGS model predicts the laminar profile near the leading edge of the flat plate, whereas the
MGS model is turbulent all the way down, as is clearly noticed from the figure. However, the
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Figure 7. Dissipation rate profiles of channel flow.

Figure 8. Streamwise variations of the skin friction coefficient.

agreement between the calculations and the experiments is fairly good toward the end of the
transition (e.g., beyond x=0.195 m). The distribution of the turbulence intensities is depicted
in Figure 10. As is observed, predictions of all models are somewhat on a lower level than the
data show, especially in the region 5By+B70.
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Figure 9. Mean velocity profiles at different downstream stations.

4.3. Backward-facing step flow

To validate the performance in complex separated and reattaching turbulent flows, the MGS
model is applied to the flow over a backward-facing step. The computations are conducted
corresponding to the experimental case with zero deflection of the wall opposite to the step, as
investigated by Driver and Seegmiller [30]. The reference velocity Uref=44.2 m s−1 and the
step height h=0.0127 m. The ratio between the channel height and the step height is 9, and
the step height Reynolds number is Re=37500. At the channel inlet, the Reynolds number
based on the momentum thickness is Reu=50000.

For the computations, grids are arranged in two blocks. The smaller one (extended from the
inlet to the step) contains a 16×48 non-uniform grid and the grid size for other one is
120×80. The inlet conditions are specified four step heights upstream of the step corner and
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Figure 10. Turbulent intensity profiles at different downstream stations.

the outlet boundary conditions are imposed 30 step heights downstream of the step corner.
The inlet profiles for all dependent variables are generated by solving the models at the
appropriate momentum thickness Reynolds number. All the quantities shown below are
normalized by the step height h and the experimental reference free-stream velocity Uref,
provided that the distance x/h is measured exactly from the step corner.

Computed and experimental friction coefficients Cf along the bottom wall (step side wall)
are plotted in Figure 11. As is observed, the CH model gives the Cf distribution with a large
overshoot followed by a sudden drop in the immediate vicinity of the reattachment point. The
MGS model predicts the skin friction coefficient qualitatively. The positive Cf that starts from
x/h=0, is due to a secondary eddy, which sits in the corner at the base of the step, inside the
main recirculation region. The recirculation length predicted by each model can be determined
by measuring the distance from the step corner to a point at which the curve changes sign. The
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Figure 11. Skin friction coefficient along the step-side bottom wall.

CH model predicts a recirculation length of 5.4, and the corresponding prediction by the MGS
model is 6.8. The experimental value of the reattachment length is 6.2690.1, making a fairly
good correspondence with the MGS model.

In Figure 12, the streamwise mean velocity profiles predicted by both the CH and MGS
models are compared with the experimental data. Obviously, the predictions of both models
are in good agreement with the experiment. It is a bit nebulous that the inaccurate prediction
of the Cf distribution by the CH model has little effect on the u-profiles.

Comparisons are extended to the distributions of the turbulent kinetic energy and the
corresponding Reynods shear stress at different x/h locations behind the step corner, as shown
in Figures 13 and 14. Since the ww component is not measured in the experiment, the usual
approximation k:3/4(uu+66) is employed. A closer inspection of the distribution indicates
that the MGS model predictions are in a broad agreement with the experimental data. The
agreement is better in the recirculation region rather than in the recovery region. It seems likely
that this a common feature of turbulent flows with separation and reattachment [31].

4.4. Semi-confined impinging slot jet

The single jet configuration with H/W=1.5 (where W is the jet width and H is the distance
between the nozzle and the impingement surface), as studied experimentally by Ichimiya and
Hosaka [32], is considered. The Reynolds number based on the slot width is 8000, and the
length of the computational domain is chosen to be 20 times the jet width. An 80×48 grid is
placed non-uniformly in the computational domain. The boundary conditions are given in
Reference [8].

Figure 15 compares the predicted Nusselt number with that of the experiment. The distance
from the symmetric axis is normalized by half of the jet width. As can be seen, predictions of
the MGS model agree well with the experiment.
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Figure 12. Mean velocity profiles at selected locations for backward-facing step flow.

4.5. Semi-confined impinging axisymmetric jet

The performance of the proposed model is further contrasted with the experimental data of the
turbulent axisymmetric jet impinging within a semi-confined space [33]. The Reynolds number
based on the nozzle diameter D is 20000 and a nozzle to plate space is of 2D. A uniform
velocity is specified at the inlet, and the inlet profiles for the turbulent kinetic energy and
energy dissipation are evaluated from k=0.003U ref

2 and e=3k1.5/(D/2) respectively. A
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Figure 13. Kinetic energy profiles at selected locations for backward-facing step flow.

constant temperature is prescribed at the wall, which simulates the experimental boundary
condition [33]. An 80×48 grid is adopted with a heavy clustering near the wall.

Figure 16 displays the comparison of the predicted Nusselt number with the experiment.
The distance from the symmetric axis is normalized by the diameter of the jet. As is
evident, the MGS model overpredicts Nu by about 70 per cent at the stagnation point.
The inability of the numerical model to predict the heat transfer coefficient in the stag-
nation region may be attributed to the isotropic nature of the turbulent heat flux model-
ing.
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Figure 14. Shear stress profiles at selected locations for backward-facing step flow.

5. CONCLUSIONS

The MGS model accounts for the near-wall and low-Reynolds number effects originating from
the physical requirements. The modified strain-dependent coefficients alleviate the numerical
instabilities as is experienced by the OGS model. The modified constant Ce1 and a secondary
positive source term in the dissipation equation enhance dissipation in near-wall regions. It
enforces the realizability constrains. The new model invokes a simple wall-boundary condition
for e. Comparisons of the model predictions with the experimental and DNS data for
well-documented flows demonstrate that the MGS model offers considerable improvement
over the OGS model.
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Figure 15. Nusselt number distribution on the impingement wall for slot jet.

Figure 16. Nusselt number distribution on the impingement wall for round jet.

APPENDIX A. NOMENCLATURE

Reynolds stress anistropybij

Cf friction coefficient
Cm eddy viscosity coefficient for Gatski and Speziale model

eddy viscosity coefficient for modified Gatski and Speziale modelCm*
diameter of a round jetD
specific internal energye
total internal energy; source term in dissipation equationE

F, G flux vectors in x-, y-direction
step heighth
unit vectors in Cartesian co-ordinate systemib , jb

k turbulent kinetic energy; heat conductivity
local Nusselt numberNu
static pressurep
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production of turbulent kinetic energyP
Prandtl numberPr
heat fluxq
source termQ
mean strain rateS
timet
temperatureT

u, 6 velocity components in the x-, y-directions
vector of conservative variablesU
slot width; mean vorticityW
Cartesian co-ordinatesx, y
non-dimensional normal distance from the surfacey+

Greek letters

d half-width of a channel
dij Kronecker’s delta

dissipation of turbulent kinetic energye

dynamic viscositym

kinematic viscosityn

densityr

Schmidt’s numbers

shear stresst

Subscripts

T turbulent condition
ref reference condition

viscous part6
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